Existence of S-Asymptotically !-Periodic Solutions for Two-times Fractional Order Differential Equations∗
نویسندگان
چکیده
Using a generalization of the semigroup theory of linear operators, we prove existence and uniqueness of S-asymptotically !-periodic mild solutions for a class of linear and semilinear fractional order differential equations of the form D +1 t u(t) + D t u(t)−Au(t) = f(t, u(t)), t > 0, 0 < ≤ ≤ 1, ≥ 0.
منابع مشابه
Weighted S-Asymptotically ω-Periodic Solutions of a Class of Fractional Differential Equations
S-asymptotically ω-periodic functions have applications to several problems, for example in the theory of functional differential equations, fractional differential equations, integral equations and partial differential equations. The concept of S-asymptotic ω-periodicity was introduced in the literature by Henrı́quez et al. 1, 2 . Since then, it attracted the attention of many researchers see 1...
متن کاملExtremal Positive Solutions For The Distributed Order Fractional Hybrid Differential Equations
In this article, we prove the existence of extremal positive solution for the distributed order fractional hybrid differential equation$$int_{0}^{1}b(q)D^{q}[frac{x(t)}{f(t,x(t))}]dq=g(t,x(t)),$$using a fixed point theorem in the Banach algebras. This proof is given in two cases of the continuous and discontinuous function $g$, under the generalized Lipschitz and Caratheodory conditions.
متن کاملON THE EXISTENCE OF PERIODIC SOLUTIONS FOR CERTAIN NON-LINEAR DIFFERENTIAL EQUATIONS
Here we consider some non-autonomous ordinary differential equations of order n and present some results and theorems on the existence of periodic solutions for them, which are sufficient conditions, section 1. Also we include generalizations of these results to vector differential equations and examinations of some practical examples by numerical simulation, section 2. For some special cases t...
متن کاملExistence and continuous dependence for fractional neutral functional differential equations
In this paper, we investigate the existence, uniqueness and continuous dependence of solutions of fractional neutral functional differential equations with infinite delay and the Caputo fractional derivative order, by means of the Banach's contraction principle and the Schauder's fixed point theorem.
متن کاملExistence of triple positive solutions for boundary value problem of nonlinear fractional differential equations
This article is devoted to the study of existence and multiplicity of positive solutions to a class of nonlinear fractional order multi-point boundary value problems of the type−Dq0+u(t) = f(t, u(t)), 1 < q ≤ 2, 0 < t < 1,u(0) = 0, u(1) =m−2∑ i=1δiu(ηi),where Dq0+ represents standard Riemann-Liouville fractional derivative, δi, ηi ∈ (0, 1) withm−2∑i=1δiηi q−1 < 1, and f : [0, 1] × [0, ∞) → [0, ...
متن کامل